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Abstract

An immune kernel clustering network (IKCN) is proposed based on the combination of the artificial immune network and the sup-
port vector domain description (SVDD) for the unsupervised image segmentation. In the network, a new antibody neighborhood and an
adaptive learning coefficient, which is inspired by the long-term memory in cerebral cortices are presented. Starting from IKCN algo-
rithm, we divide the image feature sets into subsets by the antibodies, and then map each subset into a high dimensional feature space
by a mercer kernel, where each antibody neighborhood is represented as a support vector hypersphere. The clustering results of the local
support vector hyperspheres are combined to yield a global clustering solution by the minimal spanning tree (MST), where a predefined
number of clustering is not needed. We compare the proposed methods with two common clustering algorithms for the artificial synthetic
data set and several image data sets, including the synthetic texture images and the SAR images, and encouraging experimental results
are obtained.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Tax and Duin [1] and Sch}olkopf et al. [2] proposed a
kernel method, also known as the support vector domain
description, to characterize the support of a high dimen-
sional distribution. Intuitively, the support vector domain
description computes the smallest hypersphere in feature
space enclosing the image of the input data. In this paper,
we introduce the support vector domain description
(SVDD) into a novel structural adaptation artificial
immune network for image segmentation. As the total
number of pixels in the original image is usually huge,
which cannot be directly used as antigens (train pattern),
we firstly segment the original image into regions using
the watershed segmentation algorithm. Then the mean fea-

tures energy of each watershed region is calculated, which
is regarded as the antigens of the immune kernel clustering
network (IKCN). A set of features, including the nonsub-
sampled contourlet transform (NSCT) [3] and the gray
level co-occurrence matrix (GLCM) [4], are extracted from
the image. Starting from IKCN, the input image features
are firstly divided into subsets by the antibodies, and then
each subset is mapped into a hypersphere in a high dimen-
sional feature space by a mercer kernel. Finally, the cluster-
ing results of the local support vector hyperspheres are
combined to yield a global clustering solution by MST [5]
in graph theory, which can automatically cluster the anti-
body obtained in the output space without a predefined num-
ber of clustering. Such an immune kernel approach can deal
with problems with unevenly distributed samples. Another
advantage of the proposed method is that it can simplify
the computation of support vector domain description as
well as facilitate a parameter tuning task. Furthermore, noise
patterns can be easily detected by the boundary curves
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obtained from support vectors for each antibody, which is
represented as a support vector hypersphere.

2. Mathematical preliminaries

2.1. Watershed segmentation

In this work, we use the well-known watershed segmen-
tation [6] to partition an image into nonoverlapping
regions. Pixels in a watershed region are homogeneous in
the feature space. We then introduce the basic concept of
watershed segmentation as follows:

MGðf Þ ¼ 1

n

Xn

i¼1

½ððf � BiÞ � ðf HBiÞHBi�1Þ� ð1Þ

where� and H denote dilation and erosion, respectively, and
Bi is called structural element with size (2i � 1) � (2i � 1)
pixels, and f is the original image.

If the watershed regions are too large, one region may
contain more than one focused subject in the image. If
the number of regions is too small, texture feature in the
region may not be homogeneous, and the computational
complexity will increase. In our design, we adopted two
parameters: r = 4 and h = 4. Using this setting, the number
of regions was about 1400 in each 256 � 256 image.

2.2. Feature extraction

We introduce the features used in our work, including
the nonsubsampled contourlet transform and the gray level
co-occurrence matrix. As for the NSCT features, the origi-
nal image was firstly transformed into multi-channel
images by using a NSCT decomposition, and then texture
features have been extracted by moving a window, i.e. for
any position in the feature images, mean deviation is esti-
mated in its neighborhood. In this study, we used a small
window (e.g. 15 � 15) to estimate ‘‘texture energy feature”

from the transformed multi-channel images. As for the
GLCM features, we use the entropy, energy, contrast and
correlation features for the displacement is 1 and the win-
dow’s size is 9. The feature vectors from NSCT had a set
of 18 features (the resolution level is 3 and the frequency
direction is 6), while the feature vector from GLCM had
a set of 12 features.

2.3. Support vector domain description

Let D = (xi 2 Rn, i = 1,2, � � � ,m) � X, with X � Rn.
Using a nonlinear transformation U from X to some
high-dimensional feature space, it looks for the smallest
enclosing hypersphere of radius R. This is described by
the constraints

min
R;a;ni

R2 þ C
X

i

ni

Subject to the constraint kUðxiÞ � ak2
6 R2 þ ni

ð2Þ

where k�k is the Euclidean norm, a is the center of the
hypersphere and ni P 0 is the slack variable, and C is a
constant controlling the penalty of noise. The Lagrangian
is introduced to find the smallest sphere of radius R

L¼R2�
Xm

i¼1

R2þni�kUðxiÞ�ak2
� �

bi�
Xm

i¼1

niliþC
Xm

i¼1

ni

ð3Þ

Using (2) and (3), we may turn the constrained minimiza-
tion of Lagrangian into the Wolfe dual form

max
bi

W ¼
Xm

i¼1

UðxiÞ2bi �
Xm

i¼1

Xm

j¼1

bibjUðxiÞ � UðxjÞ

subject to
Xm

i¼1

bi ¼ 1 and 0 6 bi 6 C; i ¼ 1; 2; . . . ;m

ð4Þ
The image of a point xi with ni > 0 and bi > 0 lies outside
the feature space hypersphere. A point with li = 0 is called
a bounded support vector (BSV). A point xi with ni = 0 and
0 < bi < C implies that its image U(xi) lies on the surface of
the feature space hypersphere. Such a point will be referred
to as a support vector (SV). We compute the dot products
U(xi) � U(xj) in (4) by an appropriate mercer kernel G(xi,xj),
and the Gaussian kernel is used in this study.

UðxiÞ � UðxjÞ ¼ Gðxi; xjÞ ¼ e�kxi�xjk2=r2

; r 2 R ð5Þ

3. Immune kernel clustering network

The IKCN makes use of several features of the immune
response, such as the clonal expansion of the most stimulated
cells, death of the non-stimulated cells and the affinity matu-
ration of the repertoire [7]. The network does not have a pre-
defined number of antibodies, which will be determined
dynamically based on immune principles. Finally, a MST is
used to automatically determine the final number of clusters.
The model can adaptively map input data into the antibody
output space, which has a better adaptive network structure.

3.1. IKCN algorithm

The IKCN algorithm is summarized in the pseudocode
presented below.

Step 1: Initialize randomly the antibodies in the network
and define the parameters: g(1), a, b, e and r. The
number of initial antibodies could be set between
0.005N and 0.01N, where N is the number of input
data points.

Step 2: While not reached the convergence criterion do:
2.1. For each input pattern do:

(1) present all the antigens to the network;
(2) calculate the Euclidean distance between

the antigens and the antibodies;
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(3) calculate the neighborhood of each anti-
body and find the winner antibody;

(4) calculate the support vector domain
description of each antibody and eliminate
the outliers of it;

(5) update the antibodies using the intra-points
of their SV hyperspheres.

2.2. If the current iteration is a multiple of b, then
clone the winner antibody if necessary.

2.3. If the concentration level of a given antibody is
smaller than a given threshold that can be set to
be 0.01N, then it is pruned from the network.

Step 3: Use the MST criterion proposed to segment the
antibodies at the network output.

The convergence criterion used checks the stability of
the network topology (the number of the antibodies). It
is assumed that the network topology has reached stability
if there was no variation in the number of antibodies dur-
ing the last 5b iterations.

3.2. Antibody neighborhood

An antigen is recognized involving the finding of the
most similar antibody to the given antigen, which is
expressed through

AgAbi
j ¼ fAbijmax

i
ð1=kAgj � AbikÞ; Abi 2 AbsetðkÞg ð6Þ

AgAbi
j shows that the jth antigen is recognized by the ith

antibody. The neighborhood of the ith antibody Abi�
AgN is expressed through

Abi�AgN ¼ fAgAbq
j jq ¼ i; Agj 2 Agsetg ð7Þ

where Abset(k) is the current antibody set, and Agset is the
antigen set.

3.3. Antibody competitiveness rule

The realization of antibody competitiveness is to choose
the most stimulated antibody, i.e. the winner antibody Abw

Abw ¼ fAbijmaxðAbconcentration
i Þ; Abi 2 AbsetðkÞg ð8Þ

where Abconcentration
i ¼ sumnumðAbi�AgNÞ is the concentra-

tion of the ith antibody, sumnum(�) is a count operator.

3.4. Antibody clone operator

In IKCN, network growing is inspired by the clonal
selection principle, where the most stimulated antibody is
selected for cloning. This process is described by

if roundðk; bÞ ¼ 0; and Af Abw
Agl

> e; then

AbsetðkÞ ¼ AbsetðkÞ þ Abw

else AbsetðkÞ ¼ AbsetðkÞ
ð9Þ

where Af Abw
Agl
¼ 1=kAbw � Aglk, and Agl is the antigen with

the lowest affinity to Abw.

3.5. Antibody death operator

Antibody death operator is to realize the network prun-
ing policy, which is defined as follows: if an antibody has its
concentration level less than a presented value, for example
one, longer than a specified length of time, then it can be
deleted from the network.

3.6. Antibody network learning rule

The learning rule in IKCN is similar to that of SOFM
neural networks [8]

Abiðk þ 1Þ ¼ AbiðkÞ þ gðkÞðAbi�AgNðpÞ � AbiðkÞÞ ð10Þ

where g(k) is the learning coefficient, Abi�AgN(p) is the pth
antigen that is recognized by the ith antibody, and the anti-
gen is enclosed in its SV hyperspheres. Eq. (10) shows the
antibody updating rule used. In this step, the support vec-
tor domain description of each antibody is calculated firstly
as described in Section 2. Antibodies are constantly moved
in the direction of the recognized antigens, and one anti-
body is only adjusted by those antigens in its SV hyper-
spheres, where the BSVs are regarded as outliers and are
eliminated. Thus the recognition bound of the antibody
can be arbitrary shape rather than a sphere and the noise
patterns can be easily detected.

3.6.1. Learning coefficient

In the above learning rule, the amount of the change is
guided by the learning coefficient g(k). The learning coeffi-
cient g(k) is set as a large enough value in the beginning of
learning, then after a iterations, it is exponentially
decreased by a factor r and is adaptively adjusted with
each antibody affinity. This process is described by

gðkÞ ¼ gðkÞ expð�rðk � aÞÞ ð11Þ
gAbi

Abi�AgNðpÞ ¼ gðkÞðAf Abi
Abi�AgNðpÞ � Af Abi

maxÞ=ðAf Abi
min � Af Abi

maxÞ ð12Þ

Fig. 1. Four different prototypes noise data (with 20% noise).
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where Af Abi
Abi�AgNðpÞ ¼ 1=kAbi�AgNðpÞ � Abik, Af Abi

max ¼ max

fAf Abi
AgðpÞ;AgðpÞ 2 Abi�AgNg, and Af Abi

min ¼ minfAf Abi
AgðpÞ;

AgðpÞ 2 Abi�AgNg:

3.6.2. Long-term memory coefficient

Based on the biological aspects [9], if an input pattern is
something new then the pattern can be stored as long-term
memory. With this strategy, we design a long-term memory

yi(k) by utilizing the affinity of antibodies, which is
expressed as

yiðkÞ ¼ exp �kAbiðkÞ � AbdðkÞk2

2dðemÞ2

 !

ð13Þ

Here, kAbi(k) � Abd(k)k2 is the distance between the ith
antibody Abi and the antibody Abd, which is the nearest
antibody to Abi in the current antibody set; d(em) is an
emotion signal, for simplicity, it is set to be a constant
one in this study. If kAbi(k) � Abd(k)k2 is relatively large,
then the antibody Abi may be something new and will have
a chance to recognize more antigens, so it has a tendency to
be stored as long-term memory, otherwise the input pattern
will disappear or be replaced by the other antibodies.

With the adjusted Learning coefficient g(k) and long-
term memory coefficient yi(k), we have the new complete
antibody learning rule given as

Abiðk þ 1Þ ¼ AbiðkÞ þ gAbi
Abi�AgNðpÞyiðkÞðAbi�AgNðpÞ � AbiðkÞÞ:

ð14Þ

3.7. Defining the number of clusters

We propose the use of the MST, which defines a neigh-
borhood relationship among antibodies and determines the
optimal number of clusters. An inconsistent edge may be

Fig. 2. The clustering error for the four different prototypes noise data
(the mean and the standard deviation).

Fig. 3. Four different prototypes noise data obtained from our algorithm (with 20% noise).
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determined as follows: if the length of an edge is greater
than the average plus two standard deviations, then this
edge is considered inconsistent.

4. Experimental results

Our algorithm has been tried on both the artificial syn-
thetic data set and the image data sets. We have compared
the performance of our proposed algorithms with two clus-
tering algorithms: fuzzy C mean clustering (FCM) and
RABNET [7]. One of the choice of the parameters used
to run IKCN may be: b = 2, a = 30, g(1) = 0.2, r = 0.02,
e = 0.05.

4.1. Artificial synthetic data

In this experiment, we adopt a set of artificial synthetic
data as shown in Fig. 1, which consists of 1000 points in 2D
plane belonging to four different prototypes. This database
is primarily used to compare the robustness of algorithms
to noise. We added uniform a noise of increasing magni-
tude from 0.05 to 0.3 in steps of 0.05 to the original data
set. In order to evaluate the robustness of the algorithms,

all experiments were run 30 times on the data set and dif-
ferent values of the parameters were used in each run.

The obtained statistical clustering error plot is shown in
Fig. 2. We can see that with the increase of the noise, our
algorithm can successfully identify four clusters, while
FCM and RABNET are too sensitive to noise. The number
of antibodies and average error between the antibodies and
the antigens with the iterations, the antibody support vec-
tor domain description, the antibody minimal spanning
tree result and the final clustering result with 20% noise
are shown in Fig. 3. In Fig. 3(a), the dashed lines corre-
spond to the average error and the solid lines indicate the
network size evolution. From Fig. 3(b), we can see that
the support vector domain description reduces the effect
of outliers (denoted as the diamond), so our algorithm
can deal with outliers, making it robust with respect to
noise in the data.

4.2. Image data

Experimental results on images containing various syn-
thetic and SAR texture images have been obtained. To
ensure unbiased comparison, the texture features were kept
the same for both the algorithms. All synthetic textured

Fig. 4. The segmentation results of the synthesized images. (a) The original images; (b) watershed segmentation results; (c) FCM segmentation results; (d)
RABNET segmentation results; (e) IKCN segmentation results.
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images are from the Brodatz album. Iteration average error
number of antibodies.

4.2.1. Synthetic images

Texture mosaic images were made by combining several dif-
ferent Brodatz textures. Two two-textures images D17D55
and D16D24, one three-textures image D16D24D84 and one
four-textures image D77D84D55D24, one five-textures
image D84D53D55D77D24, all of size 256 � 256, were used
for the comparative study with other texture segmentation
methods.

The original images and the watershed segmentation
results are illustrated in Fig. 4. The segmentation results
of FCM, RABNET and IKCN are illustrated in
Fig. 4(c)–(e), respectively. We can see that the FCM and
RABNET segmentation results have some noise, while
the result used by IKCN algorithm is less speckled and
smoother. The segmentation results with segmentation cor-
rectness measures are shown in Table 1. It is obvious that
IKCN segmentation result is better than the other meth-
ods. As for the computational complexity, for a
256 � 256 image, FCM had lowest the computational time
of about 21 s while IKCN had a higher computational time
than FCM, which is about 32 s, and RABNET had the
highest computational time of about 43 s. The test program

has been implemented in MATLAB 7.0 and run on an
Intel(R) Core(TM)2 1.86 GHz CPU computer.

4.2.2. SAR images

The SAR image is generated by the coherent processing
of the scattering signals, which results in a scene texture
with an undesired multiplicative speckle noise. The speckle
reduces drastically the ability to distinguish and classify the
features in SAR images. So the processing of the SAR tex-
ture image is generally more involved. Fig. 5 shows results
of various algorithms applied to three SAR amplitude
images. Fig. 5(a) is the original SAR images. Fig. 5(b) is
the resulting segmented images using watershed algorithm.
Fig. 5(c)–(e) are the results of segmentation by FCM,
RABNET and IKCN, respectively. It is obvious that
IKCN outperforms FCM and RABNET either in the accu-
racy of texture classification or in the boundary localiza-
tion or in the noise smoothness. Moreover, it can be
clearly seen that our segmentation results are much closer
to the ground truth.

5. Conclusion

In this paper, we have proposed a new image segmenta-
tion algorithm inspired by the artificial immune network
and the support vector domain description of a data set.
The novel artificial immune kernel network has a better
adaptive network structure. With the antigens got from
each watershed region, the immune kernel network can
automatically cluster the antibody obtained in the output
space without a predefined number of clustering. The
new algorithm can deal with problems with unevenly dis-
tributed samples and it can simplify the computation of
support vector domain description as well as facilitate a
parameter tuning task. Our algorithm, whose empirical

Table 1
Comparison of correctness between FCM, RABNET and IKCN segmen-
tation algorithms

FCM (%) RABNET (%) IKCN (%)

D17D55 97.13 97.86 98.95
D16D24 97.95 98.85 99.34
D16D24D84 97.65 98.73 99.25
D77D84D55D24 89.96 92.46 96.85
D84D53D55D77D24 93.78 94.09 95.02

Fig. 5. The segmentation results of the SAR images. (a) The original images; (b) watershed segmentation results; (c) FCM segmentation results; (d)
RABNET segmentation results; (e) IKCN segmentation results.
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performance has been consistently verified, compares
favorably against popular clustering algorithms, like
FCM and RABNET, on the synthetic data set and the
SAR image data sets. Results have shown that the pro-
posed method actually reduces the effect of outliers and it
is a good tradeoff between quality and computing time.
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